
libicsneo Documentation
Release 0.2.0

Intrepid Control Systems, Inc.

Aug 16, 2023

Documentation

1 API Usage 1
1.1 API Concepts . 1

1.1.1 Overview . 1
1.1.2 Events . 1
1.1.3 Event Callbacks . 2
1.1.4 Errors . 2

1.2 Device Concepts . 2
1.2.1 Open/Close Status . 2
1.2.2 Online/Offline Status . 2
1.2.3 Message Callbacks and Polling . 2
1.2.4 Write Blocking Status . 3
1.2.5 A2B Wave Output . 3

2 C++ API (icsneocpp) 5
2.1 Reference . 5

3 C API (icsneoc) 7
3.1 Reference . 7

3.1.1 Typedefs . 7
3.1.2 Structures . 7
3.1.3 Functions . 8

Index 25

i

ii

CHAPTER 1

API Usage

1.1 API Concepts

1.1.1 Overview

Events convey information about the API’s inner workings to the user. There are 3 severity levels: EventInfo,
EventWarning, and Error. However, the API treats events of severities EventInfo and EventWarning
differently than those of severity Error . From here on out, when we (and the API functions) refer to “events”,
we refer exclusively to those of severities EventInfo and EventWarning, which use the events system. Those of
severity Error are referred to as “errors”, which use a separate errors system.

Events should periodically be read out in order to avoid overflowing, and the last error should be read out immediately
after an API function fails.

Additionally, event callbacks can be registered, which may remove the need to periodically read events in some cases.

1.1.2 Events

The API stores events in a single buffer that can has a default size of 10,000 events. This limit includes 1 reserved
slot at the end of the buffer for a potential Event of type TooManyEvents and severity EventWarning, which is
added when there are too many events for the buffer to hold. This could occur if the events aren’t read out by the user
often enough, or if the user sets the size of the buffer to a value smaller than the number of existing events. There
will only ever be one of these TooManyEvents events, and it will always be located at the very end of the buffer
if it exists. Because of this reserved slot, the buffer by default is able to hold 9,999 events. If capacity is exceeded,
the oldest events in the buffer are automatically discarded until the buffer is exactly at capacity again. When events
are read out by the user, they are removed from the buffer. If an event filter is used, only the filtered events will be
removed from the buffer.

In a multithreaded environment, all threads will log their events to the same buffer. In this case, the order of events
will largely be meaningless, although the behavior of TooManyEvents is still guaranteed to be as described above.

1

libicsneo Documentation, Release 0.2.0

1.1.3 Event Callbacks

Users may register event callbacks, which are automatically called whenever a matching event is logged. Message
callbacks consist of a user-defined std::function< void(std::shared_ptr<APIEvent>) > and op-
tional EventFilter used for matching. If no EventFilter is provided, the default-constructed one will be used, which
matches any event. Registering a callback returns an int representing the id of the callback, which should be stored
by the user and later used to remove the callback when desired. Note that this functionality is only available in C and
C++. C does not currently support filters.

Event callbacks are run after the event has been added to the buffer of events. The buffer of events may be safely
modified within the callback, such as getting (flushing) the type and severity of the triggering event. Using event
callbacks in this manner means that periodically reading events is unnecessary.

1.1.4 Errors

The error system is threadsafe and separate from the events system. Each thread keeps track of the last error logged
on it, and getting the last error will return the last error from the calling thread, removing it in the process. Trying to
get the last error when there is none will return an event of type NoErrorFound and severity EventInfo.

The API also contains some threads for internal use which may potentially log errors of their own and are inaccessible
to the user. These threads have been marked to downgrade any errors that occur on them to severity EventWarning
and will log the corresponding event in the events system described above.

1.2 Device Concepts

1.2.1 Open/Close Status

In order to access device functionality, the device must first be opened, which begins communication between the API
and the device. The exception to this is setting the message polling status of the device. Trying to open/close the
device when the device is already open/closed will result in an error being logged on the calling thread.

1.2.2 Online/Offline Status

Going online begins communication between the device and the rest of the network. In order to be online, the device
must also be open. Trying to go online/offline when the device is already online/offline will result in an error being
logged on the calling thread.

It is possible to have a device be both open and offline. In this situation, device settings such as the baudrate may still
be read and changed. This is useful for setting up your device properly before going online and joining the network.

1.2.3 Message Callbacks and Polling

In order to handle messages, users may register message callbacks, which are automatically called whenever
a matching message is received. Message callbacks consist of a user-defined std::function< void(
std::shared_ptr<Message>) > and optional message filter used for matching. If no message filter is pro-
vided, the default-constructed one will be used, which matches any message. Registering a callback returns an int
representing the id of the callback, which should be stored by the user and later used to remove the callback when
desired. Note that this functionality is only available in C and C++. C does not currently support filters.

The default method of handling messages is to enable message polling, which is built upon message callbacks. En-
abling message polling will register a callback that stores each received message in a buffer for later retrieval. The

2 Chapter 1. API Usage

libicsneo Documentation, Release 0.2.0

default limit of this buffer is 20,000 messages. If the limit is exceeded, the oldest messages will be dropped until the
buffer is at capacity, and an error will be logged on the calling thread. To avoid exceeding the limit, try to get messages
periodically, which will flush the buffer upon each call. Attempting to read messages without first enabling message
polling will result in an error being logged on the calling thread.

It is recommended to either enable message polling or manually register callbacks to handle messages, but not both.

1.2.4 Write Blocking Status

The write blocking status of the device determines the behavior of attempting to transmit to the device (likely via
sending messages) with a large backlog of messages. If write blocking is enabled, then the transmitting thread will
wait for the entire buffer to be transmitted. If write blocking is disabled, then the attempt to transmit will simply fail
and an error will be logged on the calling thread.

1.2.5 A2B Wave Output

Users may add a icsneo::A2BWAVOutput message callback to their device in order to write A2B PCM data
to a WAVE file. The message callback listens for icsneo::A2BMessage messages and writes both downstream
and upstream channels to a single wave file. If downstream and upstream each have 32 channels, the wave file will
contain 2*32 = 64 total channels. Channels are indexed at 0 and interleaved such that downstream are on even
number channels and upstream on odd number channels. If we introduce a variable IS_UPSTREAM which is 0 when
downstream and 1 when upstream and desired a channel CHANNEL_NUM the corresponding channel in the wave file
would be 2*CHANNEL_NUM + IS_UPSTREAM.

Wave files may be split by channel using programs such as FFmpeg. Consider a file out.wav which was generated
using a icsneo::A2BWAVOutput object and contains 32 channels per stream. The icsneo::A2BWavoutput
object injested PCM data with a sample rate of 44.1 kHz and bit depth of 24. The corresponding channel of
upstream channel 8 in out.wav would be 2*CHANNEL_NUM + IS_UPSTREAM = 2*8 + 1 = 17. The fol-
lowing FFmpeg command may be ran in a linux environment to create a new wave file out_upstream_ch8.wav
which contains only PCM samples off of upstream channel 8.

ffmpeg -i out.wav -ar 44100 -acodec pcm_s24le -map_channel 0.0.17
out_upstream_ch8.wav

1.2. Device Concepts 3

libicsneo Documentation, Release 0.2.0

4 Chapter 1. API Usage

CHAPTER 2

C++ API (icsneocpp)

2.1 Reference

namespace icsneo

Warning: doxygenclass: Cannot find class “icsneo::Device” in doxygen xml output for project “libicsneo” from
directory: build/doxygen/xml

5

libicsneo Documentation, Release 0.2.0

6 Chapter 2. C++ API (icsneocpp)

CHAPTER 3

C API (icsneoc)

3.1 Reference

3.1.1 Typedefs

typedef void *devicehandle_t

typedef int32_t neodevice_handle_t

typedef uint32_t devicetype_t

3.1.2 Structures

struct neoversion_t

Public Members

uint16_t major

uint16_t minor

uint16_t patch

const char *metadata

const char *buildBranch

const char *buildTag

char reserved[32]

struct neodevice_t

7

libicsneo Documentation, Release 0.2.0

Public Members

devicehandle_t device

neodevice_handle_t handle

devicetype_t type

char serial[7]

struct neomessage_t

Public Members

uint8_t _reserved1[16]

uint64_t timestamp

uint64_t _reservedTimestamp

uint8_t _reserved2[sizeof(size_t) * 2 + 7 + sizeof(neonetid_t) + sizeof(neonettype_t)]

neomessagetype_t messageType

uint8_t _reserved3[12]

struct neomessage_can_t

Public Members

neomessage_statusbitfield_t status

uint64_t timestamp

uint64_t _reservedTimestamp

const uint8_t *data

size_t length

uint32_t arbid

neonetid_t netid

neonettype_t type

uint8_t dlcOnWire

uint16_t description

neomessagetype_t messageType

uint8_t _reserved1[12]

3.1.3 Functions

Functions

void icsneo_findAllDevices(neodevice_t *devices, size_t *count)
Find Intrepid hardware connected via USB and Ethernet.

For each found device, a neodevice_t structure will be written into the memory you provide.

8 Chapter 3. C API (icsneoc)

libicsneo Documentation, Release 0.2.0

Parameters

• devices: Pointer to memory where devices should be written. If NULL, the current number of
detected devices is written to count.

• count: Pointer to a size_t, which should initially contain the number of devices the buffer can hold,
and will afterwards contain the number of devices found.

The neodevice_t can later be passed by reference into the API to perform actions relating to the device. The
neodevice_t contains a handle to the internal memory for the icsneo::Device object. The memory for the internal
icsneo::Device object is managed by the API.

Any neodevice_t objects which have not been opened will become invalid when icsneo_findAllDevices() is
called again. To invoke this behavior without finding devices again, call icsneo_freeUnconnectedDevices().

If the size provided is not large enough, the output will be truncated. An ics-
neo::APIEvent::OutputTruncatedError will be available in icsneo_getLastError() in this case.

void icsneo_freeUnconnectedDevices()
Invalidate neodevice_t objects which have not been opened.

See icsneo_findAllDevices() for information regarding the neodevice_t validity contract.

bool icsneo_serialNumToString(uint32_t num, char *str, size_t *count)
Convert a serial number in numerical format to its string representation.

On older devices, the serial number is one like 138635, the numerical representation is the same as the string
representation.

Return True if str contains the string representation of the given serial number.

Parameters

• num: A numerical serial number.

• str: A pointer to a buffer where the string representation will be written. NULL can be passed,
which will write a character count to count.

• count: A pointer to a size_t which, prior to the call, holds the maximum number of characters to be
written (so str must be of size count + 1 to account for the NULL terminator), and after the call holds
the number of characters written.

On newer devices, the serial number is one like RS2259, and this function can convert the numerical value back
into the string seen on the back of the device.

A query for length (str == NULL) will return false. icsneo_getLastError() should be checked to verify that
the neodevice_t provided was valid.

The client application should provide a buffer of size 7, as serial numbers are always 6 characters or fewer.

If the size provided is not large enough, the output will be NOT be truncated. Nothing will be written to the
output. Instead, an icsneo::APIEvent::BufferInsufficient will be available in icsneo_getLastError(). False will
be returned, and count will now contain the number of bytes necessary to store the full string.

uint32_t icsneo_serialStringToNum(const char *str)
Convert a serial number in string format to its numerical representation.

On older devices, the serial number is one like 138635, and this string will simply be returned as a number.

Return The numerical representation of the serial number, or 0 if the conversion was unsuccessful.

Parameters

• str: A NULL terminated string containing the string representation of an Intrepid serial number.

On newer devices, the serial number is one like RS2259, and this function can convert that string to a number.

3.1. Reference 9

libicsneo Documentation, Release 0.2.0

bool icsneo_isValidNeoDevice(const neodevice_t *device)
Verify that a neodevice_t is valid.

This check is automatically performed at the beginning of any API function that operates on a device. If there
is a failure, an icsneo::APIEvent::InvalidNeoDevice will be available in icsneo_getLastError().

Return True if the neodevice_t is valid.

Parameters

• device: A pointer to the neodevice_t structure to operate on.

See icsneo_findAllDevices() for information regarding the neodevice_t validity contract.

bool icsneo_openDevice(const neodevice_t *device)
Connect to the specified hardware.

The device MUST be opened before any other functions which operate on the device will be valid.

Return True if the connection could be opened.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to open.

See icsneo_goOnline() for information about enabling network communication once the device is open.

If the open did not succeed, icsneo_getLastError() should provide more information about why.

If the device was already open, an icsneo::APIEvent::DeviceCurrentlyOpen will be available in ics-
neo_getLastError().

bool icsneo_closeDevice(const neodevice_t *device)
Close an open connection to the specified hardware.

After this function succeeds, the neodevice_t will be invalid. To connect again, you must call ics-
neo_findAllDevices() or similar to re-find the device.

Return True if the connection could be closed.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to close.

bool icsneo_isOpen(const neodevice_t *device)
Verify network connection for the specified hardware.

This function does not modify the working state of the device at all.

Return True if the device is connected.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

See icsneo_openDevice() for an explanation about the concept of being “open”.

bool icsneo_goOnline(const neodevice_t *device)
Enable network communication for the specified hardware.

The device is not “online” when it is first opened. It is not possible to receive or transmit while the device is
“offline”. Network controllers are disabled. (i.e. In the case of CAN, the hardware will not send ACKs on the
client application’s behalf)

Return True if communication could be enabled.

Parameters

10 Chapter 3. C API (icsneoc)

libicsneo Documentation, Release 0.2.0

• device: A pointer to the neodevice_t structure specifying the device to operate on.

This allows filtering or handlers to be set up before allowing traffic to flow.

This also allows device settings to be set (i.e. baudrates) before enabling the controllers, which prevents mo-
mentarily causing loss of communication if the baud rates are not correct.

bool icsneo_goOffline(const neodevice_t *device)
Disable network communication for the specified hardware.

See icsneo_goOnline() for an explanation about the concept of being “online”.

Return True if communication could be disabled.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

bool icsneo_isOnline(const neodevice_t *device)
Verify network communication for the specified hardware.

This function does not modify the working state of the device at all.

Return True if communication is enabled.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

See icsneo_goOnline() for an explanation about the concept of being “online”.

bool icsneo_enableMessagePolling(const neodevice_t *device)
Enable buffering of messages for the specified hardware.

By default, traffic the device receives will not reach the client application. The client application must register
traffic handlers, enable message polling, or both. This function addresses message polling.

Return True if polling could be enabled.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

With polling enabled, all traffic that the device receives will be stored in a buffer managed by the API. The client
application should then call icsneo_getMessages() periodically to take ownership of the messages in that buffer.

The API managed buffer will only grow to a specified size, 20k messages by default. See ics-
neo_getPollingMessageLimit() and icsneo_setPollingMessageLimit() for more information.

In high traffic situations, the default 20k message limit can be reached very quickly. The client application will
have to call icsneo_getMessages() very often to avoid losing messages, or change the limit.

If the message limit is exceeded before a call to icsneo_getMessages() takes ownership of the messages, the
oldest message will be dropped (LOST) and an icsneo::APIEvent::PollingMessageOverflow will be flagged for
the device.

This function will succeed even if the device is not open.

bool icsneo_disableMessagePolling(const neodevice_t *device)
Disable buffering of messages for the specified hardware.

See icsneo_enableMessagePolling() for more information about the message polling system.

Return True if polling could be disabled.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

3.1. Reference 11

libicsneo Documentation, Release 0.2.0

Any messages left in the API managed buffer will be lost upon disabling polling.

bool icsneo_isMessagePollingEnabled(const neodevice_t *device)
Verify message polling status for the specified hardware.

This function does not modify the working state of the device at all.

Return True if polling is enabled.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

See icsneo_enableMessagePolling() for an explanation about how polling works.

bool icsneo_getMessages(const neodevice_t *device, neomessage_t *messages, size_t *items,
uint64_t timeout)

Read out messages which have been recieved.

Messages are available using this function if icsneo_goOnline() and icsneo_enableMessagePolling() have been
called. See those functions for more information.

Return True if the messages were read out successfully (even if there were no messages to read) or if the count
was read successfully.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• messages: A pointer to a buffer which neomessage_t structures will be written to. NULL can be
passed, which will write the current message count to size.

• items: A pointer to a size_t which, prior to the call, holds the maximum number of messages to be
written, and after the call holds the number of messages written.

• timeout: The number of milliseconds to wait for a message to arrive. A value of 0 indicates a
non-blocking call. Querying for the current message count is always asynchronous and ignores this
value.

Messages are read out of the API managed buffer in order of oldest to newest. As they are read out, they are
removed from the API managed buffer.

If size is too small to contain all messages, as many messages as will fit will be read out. Subsequent calls to
icsneo_getMessages() can retrieve any messages which were not read out.

The memory for the data pointer within the neomessage_t is managed by the API. Do not attempt to free the
data pointer. The memory will become invalid the next time icsneo_getMessages() is called for this device.

size_t messageCount;
bool result = icsneo_getMessages(device, NULL, &messageCount, 0); // Reading the
→˓message count
// Handle errors here
neomessage_t* messages = malloc(messageCount * sizeof(neomessage_t)); // It is
→˓also possible and encouraged to use a static buffer
result = icsneo_getMessages(device, messages, &messageCount, 0); // Non-blocking
// Handle errors here
for(size_t i = 0; i < messageCount; i++) {

switch(messages[i].type) {
case ICSNEO_NETWORK_TYPE_CAN: {

// All messages of type CAN can be accessed using neomessage_can_t
neomessage_can_t* canMessage = (neomessage_can_t*)&messages[i];
printf("ArbID: 0x%x\n", canMessage->arbid);
printf("DLC: %u\n", canMessage->length);

(continues on next page)

12 Chapter 3. C API (icsneoc)

libicsneo Documentation, Release 0.2.0

(continued from previous page)

printf("Data: ");
for(size_t i = 0; i < canMessage->length; i++) {

printf("%02x ", canMessage->data[i]);
}
printf("\nTimestamp: %lu\n", canMessage->timestamp);

}
}

}
free(messages);

Warning Do not call icsneo_close() while another thread is waiting on icsneo_getMessages(). Always allow
the other thread to timeout first!

int icsneo_getPollingMessageLimit(const neodevice_t *device)
Get the maximum number of messages which will be held in the API managed buffer for the specified hardware.

See icsneo_enableMessagePolling() for more information about the message polling system.

Return Number of messages, or -1 if device is invalid.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

bool icsneo_setPollingMessageLimit(const neodevice_t *device, size_t newLimit)
Set the maximum number of messages which will be held in the API managed buffer for the specified hardware.

See icsneo_enableMessagePolling() for more information about the message polling system.

Return True if the limit was set successfully.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• newLimit: The new limit to be enforced.

Setting the maximum lower than the current number of stored messages will cause the oldest messages to be
dropped (LOST) and an icsneo::APIEvent::PollingMessageOverflow to be flagged for the device.

int icsneo_addMessageCallback(const neodevice_t *device, void (*callback))neomessage_t
, void *Adds a message callback to the specified device to be called when a new message is received.

Return The id of the callback added, or -1 if the operation failed.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• callback: A function pointer with void return type and a single neomessage_t parameter.

• filter: Unused for now. Exists as a placeholder here for future backwards-compatibility.

bool icsneo_removeMessageCallback(const neodevice_t *device, int id)
Removes a message callback from the specified device.

Return True if the callback was successfully removed.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

3.1. Reference 13

libicsneo Documentation, Release 0.2.0

• id: The id of the callback to remove.

neonetid_t icsneo_getNetworkByNumber(const neodevice_t *device, neonettype_t type, unsigned int
number)

Get the network ID for the nth network of a specified type on this device.

This function is designed so that networks can be enumerated without knowledge of the specific device. For
instance, on a ValueCAN 4-2, the second CAN network is ICSNEO_NETID_HSCAN2, while on a neoVI FIRE
the second CAN network is ICSNEO_NETID_MSCAN.

Return The netid if the call succeeds, ICSNEO_NETID_INVALID otherwise

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• type: An ICSNEO_NETWORK_TYPE_* constant denoting the network type

• number: The number of this network starting from 1

bool icsneo_getProductName(const neodevice_t *device, char *str, size_t *maxLength)
Get the friendly product name for a specified device.

In the case of a neoVI FIRE 2, this function will write a string “neoVI FIRE 2” with a NULL terminator into str.

Return True if str was written to

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• str: A pointer to a buffer where the string will be written. NULL can be passed, which will write a
character count to maxLength.

• maxLength: A pointer to a size_t which, prior to the call, holds the maximum number of characters
to be written (so str must be of size maxLength + 1 to account for the NULL terminator), and after
the call holds the number of characters written.

The constant ICSNEO_DEVICETYPE_LONGEST_NAME is defined for the client application to create static
buffers of the correct length.

See also icsneo_describeDevice().

A query for length (str == NULL) will return false. icsneo_getLastError() should be checked to verify that
the neodevice_t provided was valid.

If the size provided is not large enough, the output will be truncated. An ics-
neo::APIEvent::OutputTruncatedError will be available in icsneo_getLastError() in this case. True will
still be returned.

bool icsneo_getProductNameForType(devicetype_t type, char *str, size_t *maxLength)
Get the friendly product name for a specified devicetype.

In the case of a neoVI FIRE 2, this function will write a string “neoVI FIRE 2” with a NULL terminator into str.

Return True if str was written to

Parameters

• type: A neodevice_t structure specifying the device to operate on.

• str: A pointer to a buffer where the string will be written. NULL can be passed, which will write a
character count to maxLength.

14 Chapter 3. C API (icsneoc)

libicsneo Documentation, Release 0.2.0

• maxLength: A pointer to a size_t which, prior to the call, holds the maximum number of characters
to be written (so str must be of size maxLength + 1 to account for the NULL terminator), and after
the call holds the number of characters written.

Note that icsneo_getProductName should always be preferred where available, as the product name may change
based on device-specific factors, such as the serial number.

The constant ICSNEO_DEVICETYPE_LONGEST_NAME is defined for the client application to create static
buffers of the correct length.

See also icsneo_describeDevice().

A query for length (str == NULL) will return false. icsneo_getLastError() should be checked to verify that
the neodevice_t provided was valid.

If the size provided is not large enough, the output will be truncated. An ics-
neo::APIEvent::OutputTruncatedError will be available in icsneo_getLastError() in this case. True will
still be returned.

bool icsneo_settingsRefresh(const neodevice_t *device)
Trigger a refresh of the settings structure for a specified device.

Return True if the refresh succeeded.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

bool icsneo_settingsApply(const neodevice_t *device)
Commit the settings structure for a specified device to non-volatile storage.

When modifications are made to the device settings, this function (or icsneo_settingsApplyTemporary()) must
be called to send the changes to the device and make them active.

Return True if the settings were applied.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

This function sets the settings such that they will survive device power cycles.

If the function fails, the settings will be refreshed so that the structure in the API matches the one held by the
device.

bool icsneo_settingsApplyTemporary(const neodevice_t *device)
Apply the settings structure for a specified device temporarily.

See icsneo_settingsApply() for further information about applying settings.

Return True if the settings were applied.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

This function sets the settings such that they will revert to the values saved in non-volatile storage when the
device loses power.

bool icsneo_settingsApplyDefaults(const neodevice_t *device)
Apply the default settings structure for a specified device.

See icsneo_settingsApply() for further information about applying settings.

Return True if the default settings were applied.

3.1. Reference 15

libicsneo Documentation, Release 0.2.0

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

This function sets the default settings such that they will survive device power cycles.

bool icsneo_settingsApplyDefaultsTemporary(const neodevice_t *device)
Apply the default settings structure for a specified device temporarily.

See icsneo_settingsApply() for further information about applying settings. See icsneo_settingsApplyDefaults()
for further information about applying default settings.

Return True if the default settings were applied.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

This function sets the default settings such that they will revert to the values saved in non-volatile storage when
the device loses power.

int icsneo_settingsReadStructure(const neodevice_t *device, void *structure, size_t structure-
Size)

Apply the default settings structure for a specified device temporarily.

See icsneo_settingsApply() for further information about applying settings. See icsneo_settingsApplyDefaults()
for further information about applying default settings.

Return Number of bytes written to structure, or -1 if the operation failed.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• structure: A pointer to a device settings structure for the current device.

• structureSize: The size of the current device settings structure in bytes.

This function sets the default settings such that they will revert to the values saved in non-volatile storage when
the device loses power.

If possible, use functions specific to the operation you want to acomplish (such as icsneo_setBaudrate()) instead
of modifying the structure directly. This allows the client application to work with other hardware.

bool icsneo_settingsApplyStructure(const neodevice_t *device, const void *structure, size_t
structureSize)

Apply a provided settings structure for a specified device.

This function immediately applies the provided settings. See icsneo_settingsApplyTemporary() for further in-
formation about applying settings.

Return True if the settings were applied.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• structure: A pointer to a device settings structure for the current device.

• structureSize: The size of the current device settings structure in bytes.

If possible, use functions specific to the operation you want to acomplish (such as icsneo_setBaudrate()) instead
of modifying the structure directly. This allows the client application to work with other hardware.

bool icsneo_settingsApplyStructureTemporary(const neodevice_t *device, const void
*structure, size_t structureSize)

Apply a provided settings structure for a specified device without saving to non-volatile EEPROM.

16 Chapter 3. C API (icsneoc)

libicsneo Documentation, Release 0.2.0

This function immediately applies the provided settings. See icsneo_settingsApply() for further information
about applying settings.

Return True if the settings were applied.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• structure: A pointer to a device settings structure for the current device.

• structureSize: The size of the current device settings structure in bytes.

This function sets the default settings such that they will revert to the values saved in non-volatile storage when
the device loses power.

If possible, use functions specific to the operation you want to acomplish (such as icsneo_setBaudrate()) instead
of modifying the structure directly. This allows the client application to work with other hardware.

int64_t icsneo_getBaudrate(const neodevice_t *device, neonetid_t netid)
Get the network baudrate for a specified device.

In the case of CAN, this function gets the standard CAN baudrate. See icsneo_getFDBaudrate() to get the
baudrate for (the baudrate-switched portion of) CAN FD.

Return The value in baud with no multipliers. (i.e. 500k becomes 500000) A negative value is returned if an
error occurs.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• netid: The network for which the baudrate should be retrieved.

bool icsneo_setBaudrate(const neodevice_t *device, neonetid_t netid, int64_t newBaudrate)
Set the network baudrate for a specified device.

In the case of CAN, this function sets the standard CAN baudrate. See icsneo_setFDBaudrate() to set the
baudrate for (the baudrate-switched portion of) CAN FD.

Return True if the baudrate could be set.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• netid: The network to which the new baudrate should apply.

• newBaudrate: The requested baudrate, with no multipliers. (i.e. 500K CAN should be represented
as 500000)

Call icsneo_settingsApply() or similar to make the changes active on the device.

int64_t icsneo_getFDBaudrate(const neodevice_t *device, neonetid_t netid)
Get the CAN FD baudrate for a specified device.

See icsneo_getBaudrate() to get the baudrate for the non baudrate-switched portion of CAN FD, classical CAN
2.0, and other network types.

Return The value in baud with no multipliers. (i.e. 500k becomes 500000) A negative value is returned if an
error occurs.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• netid: The network for which the baudrate should be retrieved.

3.1. Reference 17

libicsneo Documentation, Release 0.2.0

bool icsneo_setFDBaudrate(const neodevice_t *device, neonetid_t netid, int64_t newBaudrate)
Set the CAN FD baudrate for a specified device.

See icsneo_setBaudrate() to set the baudrate for the non baudrate-switched portion of CAN FD, classical CAN
2.0, and other network types.

Return True if the baudrate could be set.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• netid: The network to which the new baudrate should apply.

• newBaudrate: The requested baudrate, with no multipliers. (i.e. 2Mbaud CAN FD should be
represented as 2000000)

Call icsneo_settingsApply() or similar to make the changes active on the device.

bool icsneo_transmit(const neodevice_t *device, const neomessage_t *message)
Transmit a single message.

To transmit a message, you must set the data, length, and netid attributes of the neomessage_t.

Return True if the message was verified transmittable and enqueued for transmit.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to transmit on.

• message: A pointer to the neomessage_t structure defining the message.

The data attribute must be set to a pointer to a buffer of at least length which holds the payload bytes. This
buffer only needs to be valid for the duration of this call, and can safely be deallocated or reused after the return.

You may also have to set network dependent variables. For CAN, you must set the arbid attribute defined in
neomessage_can_t.

Other attributes of the neomessage_t such as timestamp, type and reserved which are not used should
be set to 0. Unused status bits should also be set to 0.

Any types defined neomessage_*_t are designed to be binary compatible with neomessage_t.

For instance, for CAN, it is recommended to use neomessage_can_t as it exposes the arbid field.

neomessage_can_t mySendMessage = {}; // Zero all before use
uint8_t myData[3] = { 0xAA, 0xBB, 0xCC }; // Either heap or stack allocated is
→˓okay
mySendMessage.netid = ICSNEO_NETID_HSCAN;
mySendMessage.arbid = 0x1c5001c5;
mySendMessage.length = 3;
mySendMessage.data = myData;
mySendMessage.status.canfdFDF = true; // CAN FD
mySendMessage.status.extendedFrame = true; // Extended (29-bit) arbitration IDs
mySendMessage.status.canfdBRS = true; // CAN FD Baudrate Switch
bool result = icsneo_transmit(device, (neomessage_t*)&mySendMessage);

myData[1] = 0x55; // The message and buffer can be safely reused for the next
→˓message
result = icsneo_transmit(device, (neomessage_t*)&mySendMessage);

bool icsneo_transmitMessages(const neodevice_t *device, const neomessage_t *messages, size_t
count)

Transmit a multiple messages.

18 Chapter 3. C API (icsneoc)

libicsneo Documentation, Release 0.2.0

See icsneo_transmit() for information regarding transmitting messages.

Return True if the messages were verified transmittable and enqueued for transmit.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to transmit on.

• messages: A pointer to the neomessage_t structures defining the messages.

• count: The number of messages to transmit.

On a per-network basis, messages will be transmitted in the order that they were enqueued.

In this case, messages will be enqueued in order of increasing index.

void icsneo_setWriteBlocks(const neodevice_t *device, bool blocks)
Set the behavior of whether writing is a blocking action or not.

By default, writing is a blocking action.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to transmit on.

• blocks: Whether or not writing is a blocking action.

bool icsneo_describeDevice(const neodevice_t *device, char *str, size_t *maxLength)
Get the friendly description for a specified device.

In the case of a neoVI FIRE 2 with serial number CY2285, this function will write a string “neoVI FIRE 2
CY2285” with a NULL terminator into str.

Return True if str was written to

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• str: A pointer to a buffer where the string will be written. NULL can be passed, which will write a
character count to maxLength.

• maxLength: A pointer to a size_t which, prior to the call, holds the maximum number of characters
to be written (so str must be of size maxLength + 1 to account for the NULL terminator), and after
the call holds the number of characters written.

The constant ICSNEO_DEVICETYPE_LONGEST_DESCRIPTION is defined for the client application to cre-
ate static buffers of the correct length.

See also icsneo_getProductName().

A query for length (str == NULL) will return false. icsneo_getLastError() should be checked to verify that
the neodevice_t provided was valid.

If the size provided is not large enough, the output will be truncated. An ics-
neo::APIEvent::OutputTruncatedError will be available in icsneo_getLastError() in this case. True will
still be returned.

neoversion_t icsneo_getVersion(void)
Get the version of libicsneo in use.

Return A neoversion_t structure containing the version.

int icsneo_addEventCallback(void (*callback))neoevent_t
, void *Adds an event callback to be called when a new event is added.

3.1. Reference 19

libicsneo Documentation, Release 0.2.0

Do not attempt to add or remove callbacks inside of a callback, as the stored callbacks are locked during calls.

Return The id of the callback added. Does not error.

Parameters

• callback: A function pointer with void return type and a single neoevent_t parameter.

• filter: Unused for now. Exists as a placeholder here for future backwards-compatibility.

bool icsneo_removeEventCallback(int id)
Removes an event callback.

Return True if the callback was successfully removed.

Parameters

• id: The id of the callback to remove.

bool icsneo_getEvents(neoevent_t *events, size_t *size)
Read out events which have occurred in API operation.

Events contain INFO and WARNINGS, and may potentially contain one TooManyEvents WARNING at the
end. No ERRORS are found in Events, see icsneo_getLastError() instead.

Return True if the events were read out successfully (even if there were no events to report).

Parameters

• events: A pointer to a buffer which neoevent_t structures will be written to. NULL can be passed,
which will write the current event count to size.

• size: A pointer to a size_t which, prior to the call, holds the maximum number of events to be
written, and after the call holds the number of events written.

Events can be caused by API usage, such as providing too small of a buffer or disconnecting from a device.

Events can also occur asynchronously to the client application threads, in the case of a device communication
event or similar.

Events are read out of the API managed buffer in order of oldest to newest. As they are read out, they are
removed from the API managed buffer.

If size is too small to contain all events, as many events as will fit will be read out. Subsequent calls to ics-
neo_getEvents() can retrieve any events which were not read out.

bool icsneo_getDeviceEvents(const neodevice_t *device, neoevent_t *events, size_t *size)
Read out events which have occurred in API operation for a specific device.

See icsneo_getEvents() for more information about the event system.

Return True if the events were read out successfully (even if there were no events to report).

Parameters

• device: A pointer to the neodevice_t structure specifying the device to read out events for. NULL
can be passed, which indicates that ONLY events not associated with a device are desired (API
events).

• events: A pointer to a buffer which neoevent_t structures will be written to. NULL can be passed,
which will write the current event count to size.

• size: A pointer to a size_t which, prior to the call, holds the maximum number of events to be
written, and after the call holds the number of events written.

20 Chapter 3. C API (icsneoc)

libicsneo Documentation, Release 0.2.0

bool icsneo_getLastError(neoevent_t *error)
Read out the last error which occurred in API operation on this thread.

All errors are stored on a per-thread basis, meaning that calling icsneo_getLastError() will return the last er-
ror that occured on the calling thread. Any errors can only be retrieved through this function, and NOT ics-
neo_getEvents() or similar! Only INFO and WARNING level events are accessible through those. Only the last
error is stored, so the intention is for this function to be called immediately following another failed API call.

Return True if an error was read out.

Parameters

• error: A pointer to a buffer which a neoevent_t structure will be written to.

The API error system is thread-safe. Only an API error which occurred on the current thread will be returned.

See icsneo_getEvents() for more information about the event system.

This operation removes the returned error from the buffer, so subsequent calls to error functions will not include
the error.

void icsneo_discardAllEvents(void)
Discard all events which have occurred in API operation. Does NOT discard any errors.

void icsneo_discardDeviceEvents(const neodevice_t *device)
Discard all events which have occurred in API operation.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to discard events for. NULL can
be passed, which indicates that ONLY events not associated with a device are desired (API events).
Does NOT discard any errors (device or otherwise).

void icsneo_setEventLimit(size_t newLimit)
Set the number of events which will be held in the API managed buffer before ics-
neo::APIEvent::TooManyEvents.

If the event limit is reached, an icsneo::APIEvent::TooManyEvents will be flagged.

Parameters

• newLimit: The new limit. Must be >10. 1 event slot is always reserved for a potential ics-
neo::APIEvent::TooManyEvents, so (newLimit - 1) other events can be stored.

If the newLimit is smaller than the current event count, events will be removed in order of decreasing age.
This will also flag an icsneo::APIEvent::TooManyEvents.

size_t icsneo_getEventLimit(void)
Get the number of events which can be held in the API managed buffer.

Return The current limit.

bool icsneo_getSupportedDevices(devicetype_t *devices, size_t *count)
Get the devices supported by the current version of the API.

See icsneo_getProductNameForType() to get textual descriptions of each device.

Return True if devices was written to

Parameters

• devices: A pointer to a buffer of devicetype_t structures which will be written to. NULL can be
passed, which will write the current supported device count to count.

3.1. Reference 21

libicsneo Documentation, Release 0.2.0

• count: A pointer to a size_t which, prior to the call, holds the maximum number of devicetype_t
structures to be written, and after the call holds the number of devicetype_t structures written.

A query for length (devices == NULL) will return false.

If the count provided is not large enough, the output will be truncated. An ics-
neo::APIEvent::OutputTruncatedError will be available in icsneo_getLastError() in this case. True will
still be returned.

bool icsneo_getTimestampResolution(const neodevice_t *device, uint16_t *resolution)
Get the timestamp resolution for the given device.

Return True if the resolution was written

Parameters

• device: A pointer to the neodevice_t structure specifying the device to read out the timestamp for.

• resolution: A pointer to a uint16_t where the resolution will be stored. This value is in nanosec-
onds.

bool icsneo_getDigitalIO(const neodevice_t *device, neoio_t type, uint32_t number, bool *value)
Get the value of a digital IO for the given device.

These values are often not populated if the device is not “online”.

Return True if the value is read successfully

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• type: The IO type

• number: The index within the IO type, starting from 1

• value: A pointer to the uint8_t which will store the value of the IO port, if successful

bool icsneo_setDigitalIO(const neodevice_t *device, neoio_t type, uint32_t number, bool value)
Get the value of a digital IO for the given device.

Note that this function is not synchronous with the device confirming the change.

Return True if the parameters and connection state are correct to submit the request to the device

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• type: The IO type

• number: The index within the IO type, starting from 1

• value: The value which will be written to the IO

bool icsneo_isTerminationSupportedFor(const neodevice_t *device, neonetid_t netid)
Check whether software switchable termination is supported for a given network on this device.

This does not check whether another network in the termination group has termination enabled, check canTer-
minationBeEnabledFor for that.

Return True if software switchable termination is supported

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

22 Chapter 3. C API (icsneoc)

libicsneo Documentation, Release 0.2.0

• netid: The network ID to check

bool icsneo_canTerminationBeEnabledFor(const neodevice_t *device, neonetid_t netid)
Check whether software switchable termination can currently be enabled for a given network.

If another network in the group is already enabled, or if termination is not supported on this network, false is
returned and an error will have been reported in icsneo_getLastError().

Return True if software switchable termination can currently be enabled

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• netid: The network ID to check

bool icsneo_isTerminationEnabledFor(const neodevice_t *device, neonetid_t netid)
Check whether software switchable termination is currently enabled for a given network in the currently active
device settings.

Note that if the termination status is set, but not yet applied to the device, the current device status will be
reflected here rather than the pending status.

Return True if software switchable termination is currently enabled

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• netid: The network ID to check

False will be returned and an error will be set in icsneo_getLastError if the setting is unreadable.

bool icsneo_setTerminationFor(const neodevice_t *device, neonetid_t netid, bool enabled)
Enable or disable software switchable termination for a given network.

All other networks in the termination group must be disabled prior to the call, but the change does not need to
be applied to the device before enqueing the enable.

Return True if if the call was successful, otherwise an error will have been reported in icsneo_getLastError().

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• netid: The network ID to affect

• enabled: Whether to enable or disable switchable termination

int icsneo_getDeviceStatus(const neodevice_t *device, void *status, size_t *size)
Return the device status structures for a specified device.

This function populates the device status structures and sub members.

Return True if the device status was successfully read.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to operate on.

• status: A pointer to a device status structure for the current device.

• size: The size of the current device status structure in bytes.

bool icsneo_getRTC(const neodevice_t *device, uint64_t *output)
Get the real-time clock for the given device.

Return True if the RTC was successfully retrieved.

3.1. Reference 23

libicsneo Documentation, Release 0.2.0

Parameters

• device: A pointer to the neodevice_t structure specifying the device to read the RTC from.

• output: A pointer to a uint64_t where the RTC will be stored. This value is in seconds.

bool icsneo_setRTC(const neodevice_t *device, uint64_t input)
Set the real-time clock for the given device.

Return True if the RTC was successfully set.

Parameters

• device: A pointer to the neodevice_t structure specifying the device to write the RTC to.

• input: A uint64_t object holding the RTC value. This value is in seconds.

24 Chapter 3. C API (icsneoc)

Index

D
devicehandle_t (C++ type), 7
devicetype_t (C++ type), 7

I
icsneo (C++ type), 5
icsneo_addEventCallback (C++ function), 19
icsneo_addMessageCallback (C++ function), 13
icsneo_canTerminationBeEnabledFor (C++

function), 23
icsneo_closeDevice (C++ function), 10
icsneo_describeDevice (C++ function), 19
icsneo_disableMessagePolling (C++ func-

tion), 11
icsneo_discardAllEvents (C++ function), 21
icsneo_discardDeviceEvents (C++ function),

21
icsneo_enableMessagePolling (C++ function),

11
icsneo_findAllDevices (C++ function), 8
icsneo_freeUnconnectedDevices (C++ func-

tion), 9
icsneo_getBaudrate (C++ function), 17
icsneo_getDeviceEvents (C++ function), 20
icsneo_getDeviceStatus (C++ function), 23
icsneo_getDigitalIO (C++ function), 22
icsneo_getEventLimit (C++ function), 21
icsneo_getEvents (C++ function), 20
icsneo_getFDBaudrate (C++ function), 17
icsneo_getLastError (C++ function), 20
icsneo_getMessages (C++ function), 12
icsneo_getNetworkByNumber (C++ function), 14
icsneo_getPollingMessageLimit (C++ func-

tion), 13
icsneo_getProductName (C++ function), 14
icsneo_getProductNameForType (C++ func-

tion), 14
icsneo_getRTC (C++ function), 23

icsneo_getSupportedDevices (C++ function),
21

icsneo_getTimestampResolution (C++ func-
tion), 22

icsneo_getVersion (C++ function), 19
icsneo_goOffline (C++ function), 11
icsneo_goOnline (C++ function), 10
icsneo_isMessagePollingEnabled (C++ func-

tion), 12
icsneo_isOnline (C++ function), 11
icsneo_isOpen (C++ function), 10
icsneo_isTerminationEnabledFor (C++ func-

tion), 23
icsneo_isTerminationSupportedFor (C++

function), 22
icsneo_isValidNeoDevice (C++ function), 9
icsneo_openDevice (C++ function), 10
icsneo_removeEventCallback (C++ function),

20
icsneo_removeMessageCallback (C++ func-

tion), 13
icsneo_serialNumToString (C++ function), 9
icsneo_serialStringToNum (C++ function), 9
icsneo_setBaudrate (C++ function), 17
icsneo_setDigitalIO (C++ function), 22
icsneo_setEventLimit (C++ function), 21
icsneo_setFDBaudrate (C++ function), 17
icsneo_setPollingMessageLimit (C++ func-

tion), 13
icsneo_setRTC (C++ function), 24
icsneo_setTerminationFor (C++ function), 23
icsneo_settingsApply (C++ function), 15
icsneo_settingsApplyDefaults (C++ func-

tion), 15
icsneo_settingsApplyDefaultsTemporary

(C++ function), 16
icsneo_settingsApplyStructure (C++ func-

tion), 16
icsneo_settingsApplyStructureTemporary

(C++ function), 16

25

libicsneo Documentation, Release 0.2.0

icsneo_settingsApplyTemporary (C++ func-
tion), 15

icsneo_settingsReadStructure (C++ func-
tion), 16

icsneo_settingsRefresh (C++ function), 15
icsneo_setWriteBlocks (C++ function), 19
icsneo_transmit (C++ function), 18
icsneo_transmitMessages (C++ function), 18

N
neodevice_handle_t (C++ type), 7
neodevice_t (C++ class), 7
neodevice_t::device (C++ member), 8
neodevice_t::handle (C++ member), 8
neodevice_t::serial (C++ member), 8
neodevice_t::type (C++ member), 8
neomessage_can_t (C++ class), 8
neomessage_can_t::_reserved1 (C++ mem-

ber), 8
neomessage_can_t::_reservedTimestamp

(C++ member), 8
neomessage_can_t::arbid (C++ member), 8
neomessage_can_t::data (C++ member), 8
neomessage_can_t::description (C++ mem-

ber), 8
neomessage_can_t::dlcOnWire (C++ member),

8
neomessage_can_t::length (C++ member), 8
neomessage_can_t::messageType (C++ mem-

ber), 8
neomessage_can_t::netid (C++ member), 8
neomessage_can_t::status (C++ member), 8
neomessage_can_t::timestamp (C++ member),

8
neomessage_can_t::type (C++ member), 8
neomessage_t (C++ class), 8
neomessage_t::_reserved1 (C++ member), 8
neomessage_t::_reserved2 (C++ member), 8
neomessage_t::_reserved3 (C++ member), 8
neomessage_t::_reservedTimestamp (C++

member), 8
neomessage_t::messageType (C++ member), 8
neomessage_t::timestamp (C++ member), 8
neoversion_t (C++ class), 7
neoversion_t::buildBranch (C++ member), 7
neoversion_t::buildTag (C++ member), 7
neoversion_t::major (C++ member), 7
neoversion_t::metadata (C++ member), 7
neoversion_t::minor (C++ member), 7
neoversion_t::patch (C++ member), 7
neoversion_t::reserved (C++ member), 7

26 Index

	API Usage
	API Concepts
	Overview
	Events
	Event Callbacks
	Errors

	Device Concepts
	Open/Close Status
	Online/Offline Status
	Message Callbacks and Polling
	Write Blocking Status
	A2B Wave Output

	C++ API (icsneocpp)
	Reference

	C API (icsneoc)
	Reference
	Typedefs
	Structures
	Functions

	Index

